LA-UR-78-2813 $“R
TITLE:

FLOW PROBLEMS

AUTHOR(S): C. W. Hirt

23 Oct 1978

By acceptance of this article for publication, the
publisher recognizes the Government's (license) rights
in any copyright and the Government and its authorized
/ representatives have unrestricted right to reproduce in

whole or in part said article under any copyright
(secured by the publisher.

publisher identify this article as work pei formed under

The Los Alamos Scientific Laboratory requests that the
) the auspices of the USERDA.

loss/\‘alamos
sclentific laboratory N

of the University of California
LOS ALAMOS, NEW MEXICO 87546

An Aftirmaiive Action/Equal Opportunity Ernployer ” b
Form No. K UNITED STATES
St. No. 2620 ENERGY RESEARCH AND
Y DEVELOPMENT ADMINISTRATION

CONTRACT W.7405.ENG. 36

ColF — 310 149 - - |

FIED SOLUTION ALGORITHMS FOR FLUID

SUBMITTED TO: Numerical Methods for Partial
Differential Equations Seminar,
University of Wisconsin,

NOTICE
This rteport was prepared as an account of work
sponsored by the United States Govemment. Neither 'h{
United States not the United States Department of
Energy, nor sny of their employees, not any of theit
contractors, sub ar their employ makes
any wairanty, express ot implied, or assumes any fegal
liability or responsibility for the accuracy, completeness
or usefulness of any infurmation, apharatus, product ot
procens disclosed, or fepresents that 1ts use would not
infringe privately owned nights.

About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution. Original color illustrations appear as black and white images.

For additional information or comments, contact:

Library Without Walls Project

Los Alamos National Laboratory Research Library

Los Alamos, NM 87544

Phone: (505)667-4448

E-mail: lwwp@lanl.gov

ABSTRACT

A simplified algorithm is described for the numerical
solution of the Navier-Stokes equations. Because of its
simple construction, the algorithm serves as a good intro-
duction to numerical fluid dynamics as well as a basis for
developing many kinds of new solution methods. To illus-
trate the flexibility of this algorithm simple modifications
are described for introducing internal obstacles, an accel-
erated steady-state solution method, a potential flow op-
tior, and a method of increasing numerical accuracy.

I. INTRODUCTION

There are many advocates and practitioners of numerical
fluid dynamics. There are also nearly as many nhumerical
methods or codes, Most of these codes differ only in mat-
ters related to choices for finite difference approxima-
tions, boundary condition options, special purpose features,
or other details, When stripped to their essentials the
majority of solution methods reduce to reiatively simple al-
gorithms,

In this lecture we first present such a stripped-down
algorithm for the numerical solution of the dynamics of
incompressible, Navier-Stokes fluid, This solution
algorithm (SOLA) is simple, straightforward, and provides a
basis for learning the essential elements needed to obtain
numerical solutions [1l].

We shall then look at a variety of modifications and
extensions of the basic algorithm., For example, easy ways
of increasing accuracy, achieving fast steady-utate solu~
tions, adding a potential flow option, or including internal
obstacles. In addition to the modifications described here,
there are extended versions of SOLA available for treating
free-boundary problems (SOLA-SURF) [1], and compressibilicy
effects (SOLA-ICE) {[2].

The presentation of a variety of modifications that may
be made to the SOLA code serves a dual purpose., Each modi-
fication focuses attention on some element of the basic al-
gorithm and its relationship to the remaining elements.
These modifications also illustrate how easy it is to devel-
op new and powerful computational achemes for many different
applications,

The SOLA code described here is publically available
from the National Energy Software Center (formerly the
Argonne Code Center), 9700 South (ass Avenue, Argonne, IL
60439,

11. SOLA-A SOLUTION ALGORITHM FOR INCOMPRESSIBLE FLUID FLOW

The solution algorithm (SOLA) is a simplified version
of the Marker-and-Cell (MAC) method originally developed by
Harlow, et al. [3). It is a numerical method for the solu-
tion of the time-dependent, two-dimensional, Navier-Stokes
equations,

2 2 2 2
du , du” . duv w __dp 37u , 37u 1d%u_wu
et Tay TEx ax*gx”[;:*a—z*‘(xrx ‘2)]
y X
(1)
woaw 0w e, L [,k
at 9x 9y x 3y Yy ~ 22T X
X y
and the incompressibility condition
g-;%+g—;!+5§-o . (2)

HBere the velocity components (u,v) are in the coordinate di-
rections (x,y), p is the vatio of pressure tc constant den-
sity, (9x' gy) are body accelerations, and v is a constant
coefficient of kinematic viscosity. The parameter § is set
to zero when calculations are to be performed in Cartesian
coordinates. By setting £ equal to unity the equations are
those for cylindrical coordinates in whi~h x is the radial
direction and y the axial direction,

The basic solution technique contained in SOLA provides
solutions of Eqs. (1-2) in a rectangular region whose bound-
aries may be specified in various ways through the selection
of input parameters. In particular, options are available
for rigid walls with free~slip or no-slip tangential veloci-
ty conditions, as continuative outflow boundaries, or as
periodic boundaries. Constant pressure or specified inflow
and outflow boundari¢s are also easily added, as are inter-
nal obstacles, socurces, and sinks.

A. Numerical Approzimations

The finite-difference mesh used in SOLA, see Fig. 1,
consists of rectangular cells of width éx &and height 4y,
The mesh regicon containing fluid is composed of IBAR cells
in the x-direction, labeled with the index i, and JBAR cells
in the y~direction, labeled with the index j. The fluid re-
gion is surrounded by a single layer of fictitious cells so
that the complete mesh consists cf IBAR+2 by JBAR+2 cells,
The fictitious cells are used to set boundary conditions so
that the same difference equations used in the interior of
the mesh can also be used at the boundaries,

Fluid velocity components and pressures are located at
staggered cell positions «s shown in Fig, 2. This stagger-
ing has been chosen to simplify the difference approxima-
tions to Egs. (1-2).

Subacripts are used to denote cell locations and super-
scripts for the time level at which quantities are evalu-
ated. For cxumplo,u?*k‘ denotes the u-valocity at time nét
located at the .ight side of cell (i,3j). Using this nota-
tion the finite-difference equations used toc approximation
the Navier-5tokes equations, Egs. 1, Lave the form,

max %
e /]
g E

WWMWMW i ’ 7

IBAR+] IMAX
Axis of Symmetry when cyls |

Fig. 1. General mesh arrangement, with fictitious
boundary cells shaded.

vLj+*
——

ui-*'j + Pit] T’ ui** -j

>
Vi.j_*

Fig. 2. Arrangement of finite difference variables
in a typical mesh cell.

i N n _.n + - - - FIC
PRl R (LWRE AW L S LML S
+vis]
(3)

At = g ¢ 5t (80,5 - B gua) /8y + gy - e - vt - e
svist]

where, e.g., FUX represents the expression used for the con-
vective flux of u in the x~-direction, and VISX represents
the expression used for the viscous acceleration of u. All
terms on the uvight side of Bg. (3) are evaluated using known
time level n quantities.

As far as the basic SOLA algorithm jis concerned, the
difference expressions chosen for the convective and viscous
accelerations in Eq. 3 are immaterial, provided the result-
ing equations lead to numerically stable approximations.
Thus, the user could readily insert other difference approx-
imations for FUX, VISX, etc.,, without having to change the
remainder of the algorithm (except possibly for boundary
condition changes needed to be consistent with the new ex-
pressions).

In the publically available version of SOLA a combina-
tion of "central®™ and "donor-cell® differencing is used for
the convective fluxes. For example, FUY is approximated by
the expression,

1 -
FUY = 3y [V, o8 s, 303 * V303 3] Cig, g = B, 300

" Vi, o Yok, = O1Ving, 5l Gy g1 - “M.j’] .

Simple averages are used for quantities needed at locations
where they are not defined, e.gq., Uy, 4k = 1/2 (ui\'_;{”j +
ui+%,j+1)' The parameter o is a user specified input con-
stant, whose value is between zero and one. When a is zero
the convective approximations are centered in space, but
when a equals one the approximations use the upstream or do-
nor-cell values of the gquantities to be fluxed. Unfortu-
nately, the centered form leads to equations that are compu-

tationally unsatable [4]. In general, a should be chosen
slightly larger than the maximum value occurring in the mesh
of |'F£| or Iggsl .

X Sy

All other convective flux contributions are approxi-
mated in SOLA in a fashion similar to FUY. The viscous ac-
celerations are approximated by central difference expres-
sions, For a complete set of difference equations, Ref, 1
should be consulted.

The velocities computed according to Egs. (3) will not,
in general, satisfy the condition of incompressibility.
This condition, Eq., (2), for a typical cell (i,j) is approx-
imzted as

31? (“?les.j - “?:xls.j) + 31? ("f:}#z - "’ﬁ-s)* iAx—a;-Tgs (“2:3];,3'

+u';;1§'j)=0 . (4)

To satisfy this condition the pressure in cell (i,j) is
suitably changed. For example, when the velocity divergence
is negative, corresponding to a net flow of fluid into the
cell, the pressure is increased to prevent the inflow., When
the divergence is positive, corresponding to a net outflow,
the pressure is reduced to prevent the outflow., If D is the
velocity divergence, then the pressure change needed to
drive D to zero is

cp--mn/[zst(—lj+—1-§)], (s)
6% Sy

where ; is an over-relaxation parameter (1< w<2), Once S§p
is determined, the cell pressure is updated to Pi,5 + 6p and
the four cell edge velocities are also updated to reflect
this change,

Y, 4 -+ uiﬂ'ioj t 8t 8p/bx
(6)

Vi, g T Vi, eyt SEERlY

The pressure adjustments must be done iteratively, be-
cause a change in one cell will upset the b ance in neigh-
boring cells. Convergence is achieved when all cells have D
magnitudes iess than some small predetermined value. It can
be easily shown [5] that this iterative pressure adjustment
is equivalent t~ solving a Poisson equation for the pres-
sure.

To summarize the above steps, which make up a complete
computational cycle:

(1) Approximate new velocities are conputed from the

explicit difference equations, Eq. (3).

(2) These velocities and cell pressures are then iter-

atively adjusted to satisfy the incompressibility con-

dition, Eq. (4).

(3) Finally the time is advanced to t+6t and the new

pressure and velocities may be used as starting values

for the next cycle of computation. Bookkeeping and
output are also done in this step as desired.
B. Boundary Conditions

To complete the basic SOLA method we must specify
boundary conditions. For convenience the code has four
boundary condition options that may be selected through in-
put parameters, These options are rigid free-slip and rigid
no-slip walls, continuative outflow boundaries, and periodic
boundaries.

All boundary conditions are imposed by suitably defin-
ing flow variables in the fictitious boundary cells. For
example, consider the left boundary:

(1) PFor a rigid, free-slip wall,
U3/2,3 = 0:0r V1,345 = V2, 44y
(2) For a rigid, no-slip wall,
Y32, " 00 Vi, 34k T T V2,54
(3) For a continuative boundary,

Y3/2,3 © Yss2,3" V1,348 T V2, i4%

(4) For x-periodic boundaries, on the left

Y3/2,3 T YiBar+k,j ¢ V1,3+% T VIBAR, 3+
V2.5+% = ViBaR+1,j+4% ' P2,5 T Pimar+l,j

and on the right

YUrpar+3/2,5 ~ Us/2,3 ' ViBAaR+2,3+% T V3,j4% °

In addition to the above boundary conditions the code
has a special section reserved where additional conditions
can be imposed. In all cases the additional conditions
override the standard ones. For example, specified inflow
or outflow bou.-laries are generated by setting the rficti-
tious cell and bcundary velocities to the desired values.
For internal obstacles with shapes constructed by blocking
out mesh cells, we add in the special boundary condition
section statements that set all velocities in the blocked
out cells to zero. '
C. Stability and Accuracy

To prevent numerical instabilities or inaccuracies,
certain restrictions must be observed in defining the mesh
increments &6x and 6y, the time increment 6t, and the up-
stream differencing parameter a. For accuracy, the mesh in-
crements must be chosen to resolve the expected spatial var-
iations of all dependent veriables. Once a mesh has been
chosen, the choice of the time increment necessary for sta-
bility is governed by two restrictions. First, material
cannot be allowed to convect through more than one cell in
one time step, because the difference equations assume flux-
es only between adjacent cells. Thus, it is necessary that
§t satisfy, :

6't<min{-[6vxl— ’ -lﬁvxl—} (7)

for every cell in the mesh., Usually, 6§t ig chosen equal to
1/3 to 1/4 the minimum cell transit time. Second, when the
kinematic viscosity is nonzero, momentum must not diffuse
more than approximately one cell in one time step, or

2 2
6x” &
v 6t < 1/2 ——I~—JL7 (8)
§x° + 8y

when St has been selected to satisfy the above accuracy and
stability conditions, the parameter & is then chosen to sat-
isfy

-

1> a > max {l'?—;’- , l‘?—;|} . ()
This last condition is needed to eliminite an instability
that would otherwise develop because of the form chosen for
the convective fluxes,
D. Summary

The basic solution algorithm described above is pro-
gramned in a straightforward ané concise way in the SOL2
code [1). As it stands, it provides a powerful tool for the
solutisn of many interesting flow problems. One of the most
povertfiLl aspects of SOLA, however, s the ease with which it
can be modified or extended to handle i.ew problems. Several
exampies of this are outlined in the following sections,
which also include sample calculations illustrating a varie-
ty of possible applications,
IIl1. MODIFICATIONS OF THE BASIC ALGORITHM
A. Additional Boundary Conditions

It has already been mentioned that additional exterior
and interio: boundary conditions, beyond those already built
intc the code, are easily added. To illustrate this capa-
bility let us consider the flow generated in the vicinity of
an abrupt pipe expansion, Fig. 3. A cylindrical meah is
used that consists of 10+2 cells in the radial (x) direction
and 25+2 cells in the axial (y) direction. At the upstreanm,
or inpuyt end of the pipe, a 5 by 5 block of cells at the
outer radius has been defined as an obstacle region. This
is accomplish2d by inserting into the special boundary con-
dition section statements that set u=v=0 at all faces of the
obstacle cells. The specified inflow velocity at the bottom
of the mesh is also definrd in this section as a positive
unit v-velocity and zevro u-velocity in the first 5 ficti-
tious cells at the bottom of the mesh. These values over-
ride the free-slip wall conditions set in the standard
boundary condition section. Mesh-side boundaries were ini-
tialized as free-szlip walls and the top was treat:d as a
continuative boundary.

The velocity results shown in Pig. 3 after 400 cycles
of time advancement, are stationary and show the preserce of
a large recirculation region existing downstream of the step
expans.ion. The length of this region agrees well with
available experimental data [6].

In an analogous way the user can introduce an almost
unlimited variety of interior and extericr boundary condi-
tions to fine obstacles, sources and sinks, and even the in-
fluence of flexible boundaries, In the latter case the
boundary is treated as a specified normal velocity free-slip
boundary. The velocities to be specified may come from a
coupled structure code or other source. This method only
works when the wall displacements are small compared to the

ll"l:o..
Hite,,.
"l'la..
““c..
“ll..,
"l:.

I"c..
..

“h. §
e

i,
I |
Y,

Fig. 3. Velocity fi2ld in region of a suvdden pipe enlarge-
ment. All vectors start at cell centers. A vector
length equal to horizontal cell size cnrrasponds to
a speed of 1/4 ihe inlet speed.

wesk cell size, for then the specifj_ation of the wall ve-
locity at the originai wall locati~ns instead of its actual
location, is a good approximar.on. Of course, all these
boundary condition options ace limited to boundaries that
coincide with mesh cell boundaries. Modifications needed to
treat more general shaprs are considered in SOLA-SURF [1l].
B. Steady-State Calculations

In many studies, like that described above, the main
interest is in the a._ mptotically steady flow, and not in
the details ~f the transients leading up to tbis flow, 1In
these cases it has been shown by R. H. Hotchkiss that it is
often pussible to speed up the attainment of steady state by
limiting the pressure iteration to only one iteration per
tine cycle, This is easily done by inputting in the code
a large value for the convergence criterion, EPSI, The
idea behind this technique is that wakes and other vorticity
containing regions can c¢nly be generated by convective
transport carrying vorticity into the flow from boundaries
or other sources. While this is happening it is unnecessary
to exactly satisfy the incompressibility condition. Once
the flow reaches a steady state the incompressibility condi-
tion will be satisfied, because otherwise the one pass taken
through the pressure iteration each cycle would alter the
velocity and pressure fields, that is, the flow would not be
steady.

In this way a considerable savings in computer time is
usually realized by eliminating a large number of unneces-
sary pressure iterations, When this scheme is used, how-
ever, }he over-relaxation parameter, w, must not exceed uni-
ty, otherwise an instability may result.

An example of the use of this technique is provided by
the abrupt expansion problem described in sec. III.A. In
the unmodified calculation, in which transients were comput-
ed accurately, it took approximately 23 sec of CDC-7600 com-
puter time to reach steady state. With the above modifica-
tion, steady state was reached in approximately 14 sec.

C. Potential Flow

Sometimes it is useful to have a potential flow solu-
tion to a particular problem. Por those cases it isn't nec-
essary to construct a new code, because SOLA can be easily

modified to do the job., The basis for this modification
comes from the observation that the finite-differenced mo-
mentum eguations, Egs. (3), can be cast into an approxima-
tion for the potential flow equations in which the velocity
is equal to the gradient of a scalar potential. This is
done by eliminating all body, convective, and viscous accel-
erations, and by setting the n~level velocities to zer»> in
step one of each solution cycle so that what remains is
“gii,j = %& (pg,j - 92+1,j) 10

n+l st n n
Vi, j+x T &y (Pi,j - pi,j+l) .

Formally, we can identify étp with a velocity poten-
tial., The incompressibility condition is still satisfied by
iterating on the pressure as in the full SOLA code, &nd all
boundary conditions may be used without modification. Thus,
the only modification needed in SOLA to produce potential
flow solutions is to bypass most of step one in the usual
SOLA algorithm, such that Egs. (3) are reduced to Egqs. (10).

In addition tc being simple, this variation of the bas-
ic algorithm is quite insvructive, for it emphasizes what is
omitted from the full equ:tions when the potential flow ap-
proximation is made. In particular, no information about
the velocity field is retained from cycle to cycle, except
for specified boundary velocities, If the boundary condi-
tions are time independent, then only nne smolution cycle is
needed to obtain the flow. No viscous effects may be in-
cluded, and no flow features can be convected about, because
these mechanisms have been omitted.

When SOLA is modified to have free sucfaces, as in the
SOLA-SURF cnde (l], this potential flow option can still be
used, Lut then it is also necessary to modify the free-sur-
face boundary condition for p, as described in Ref. 7.

The abrupt expansion problem used to illustrate the two
previous modifications can also be used here. Figure 4
shows the velocity field generated when potential flow is
assumed. The flow field is completely established in one

AR R RR NN
AR RRRRN N

tirerte
(AR RN EANER

[ANNERNRN

(XFNNANAY
I” 4/0:-

f{ V..

Fig. 4+ Velocity field for potential flow at a region of
sudden pipe enlargement. Compare with Fig. 3.

time step (requiring 983 iterations), Notice, however, that
the recirculation region is entirely absent, because no
vorticity is allowed to exist in the flow region.
D. Second Order Accurate Differance Approximations
Finite-Difference approximations used in the standard
versiocn of SBOLA are first order accurate. That is, they
have truncation errors proportional to the first power of
the time increment, &t, and the first power of the space
increments ¢x and §y. The advantage of these approximations

is that they are simple and easy to keep computationally
stable. For a great many applications they also provide ac-
curate numerical solutions. In some cases, however, it is
too costly to increase the number of cells to the point
where the resolution is fine enough for accurate first order
approximations, In these cases, it is often useful to have
a second order accurate method,

In SOLA, second order accuracy can be quickly incorpo-
rated, without the introduction of additional storage ar-
rays, by using a variant of a scheme employed by MacCormack
[8]. The essence of this technique is best illustrated
through application to the one-~dimensional Burger's egqua-
tion,

32u

= \ ——7 . \11)

ox

1

Ju
E

A finite-difference approximation vo Eg. (l1) that is apalo-
gous to the approximations used in SOLA is

u'j‘+1 - u‘j‘ + 3t (-FUX + VISX) (12)
where
1 n/n n RPT ¢ n _,n_n
FUX = 33;-[uj (uj+1 - “j-l) u]ujl (“j+1 Zuj + uj-l))
(13)
v _({n n,.n
visx =y (uf,; - 2 +u]_)) .

§x

Here, as in SOLA, a=0 results in a centered difference ap-
proximation that is spatially second order accurate, but al-
(1] unébnditionally unstable when v=(, An a value of unity
corresponds to upstream or donor cell differencing that is
first order accurate and stable when

A better understanding of the role & plays to produce a
stable algorithm can be gained by checking how Egs., (12)-
(13) approximate Eq. (11). This is done by e._anding the
difference equation in a Taylor series about the point jéx
and nét, Doing this we find the following differential ap-
proximation,

2
u du\ 3u aluiét _ 6t 2 duy 3u
w_+(u+61:ui‘;,-e)1é;n(\»+ 3 5 U +26tv§;) x2
2%y et 23% 2 2
8t u - = v 3+ 0(8x°, 8x8t, 6t%).
w2 3

(14)

In arriving at this result, a term involving azu/at2 has
been rewritten in terms of space derivatives by using the
Taylor expanded equation itself, This replacement is justi-
fied, because the difference equation reguires only one ini-
tial condition 80 its differential aprroximatcion should
likewise require only one initial condition. The first term
on the right side of Eq. (14) is a diffusion term, When v=0
the remaining diffusion coefficient will be positive only
when

afu 8x §§gi

2 2 *

This result explains the SOLA rule-of-thumb stability re-
quirement, a>|ust/6x|. When this condition is violated the
difference equations yield exponentially growing solutions
that are consequences of a negative diffusion coefficient,

To obtain second order accuracy we proceed as follows.
First, compute an estimate for ug+1 ugsing the available n-
level quantities and ful} upstream (a=+1) approximations.
Denote this estimate by uj,

* n n
uj - uj + 6t [- FUX + VISX]u_l . (15)

Next, xrepeat this process by evaluating FUX and VISX using
*

the u values and full igynltream (a ==1) approximations.

Denote the new values by uy .

th] L]

uy = ouy 8t [- FUX 4 VISK] ., - (16)

Finally, the desired second order accurate values are given
by

n+l _ no, %
u} 172 (u +u) . (17)

That this is second order accurate can be seen by combining
Egs. (15)-(17),

ml_ 1 n_1f* - * }
e 30+ 3 {uj + 6t [- FUX + VISX]__,

(18)
=l 45 6t {[-FUX + VISX],) + [-FUX + visxly_ o} .
i 2 a=]1 a=-]1

Recalling that uf values are first order estimates for ug+1,
the curly bracket is seen to contain an average of accelera-
tions evaluated at levels n and n+l and an average of accel-
erations evaluated with a=] and a=-~1, Th2 net result after
Taylor expanding is that all first order 6t and first order
a truncation errors cancel, leaving a second order accurate
approximation.

It might appear from Eq. (17) that an additional stor-
age array over the first order method is required in this
scheme to accommodate the u'® values. This is not the case,
however, if we rvewrite the basic time advancement calcula-
tion as

U= BE(u) + (1-B)u (19)

where f(u) represents the right side of Eq. (15) or (16).
During the first pass through Eg. (19) we use 8 =1 and u=u?,
80 that

W ag =g .

Then we interchange storage arrays setting u‘ = u &nd u-u'.
During the second pass through Bg. (19) B is set equal to
1/2, and because of the interchanged arrays,

n+l = 1 * 1,0
u =u=3 £(uw) + Fu '

which is equivalent to Eq.(17).

A list of FORTRAN statements that may be added to the
basic SOLA code listed in Ref. 1, to give it this second or-
der accurate option, can be obtained by writing directly to
the author.

Because the second order method requires two passes
through the convective and viscous acceleration calculations
each cycle, calculation times are correspondingly larger
than in the first order method. However, the increased ac-
curacy means that larger space and time increments can often
be used to reduce computation times., Unfortunately, it is
not always easy to decide a priorl when it is best to use a
finely resolved, fast, first order calculation or a coarsely
resolved, slow, second order calculation, In practice, a
useful procedure is to use the simpler first order method
for most calculations, but to check accuracy with an occa-
sional second order calculation using the same mesh.

E, Additional Modifications

Numerous other features have been added to the SOLA al-
gorithm at one time or another to achieve a variety of use~
ful capabilities. For example, automatic time step con-
trols, variable mesh increments (§x and 8y), marker
particles to trace flow patterns, a variable viscosity or
turbulence model, and a coupled density equation for the
study of stratified fluids.

Perhaps the most important extensions that have been
made to SOLA are those contained in a set of codes alsu
available from the National Energy Software Center. These
codes are:

(1) SOLA-SURF, which has a free surface or rigid,

curved surface capability. The curved surfaces are

limited to configurations that are defined by their
height above the bottom of the computational mesh in

@¢ach column of cells.

{2) SOLA-ICE, which extends the incompressible algo-

cithm in SOLA to compressible fluids, so that flows

containing shock and rarefaction waves may be computed.

Because of the implicit numerical formulation used in

this code it can also be used for far subsonic (incom-

presdible) flows.

In addition, there are several other SOLA codes soon to
be installed in the Center. These consist of a two-dimen-
sional code for two-phase flow analysis (SOLA-DF) [9]), a

code for two-phase flow in networks composed of one-dimen-
sional components (SOLA-LOOP) [10], and a three-dimensional
version with a free surface capability (SOLA-3D) ({1l1].

From the examples described here, it should be obvious
to the innovative user that these codes offer a basis for
the development of an almost unlimited variety of new codes.
In many cases the needed modifications can be made quickly
and easily, because of the simple construction of the basic
algorithms,

IVv. Acknowledgments

The SOLA code series has resulted from the combined ef-
forts of many members of Group T-3 of the Los Alamos Scien-
tific Laboratory. Particular rention, however, should be
made of N. C. Romero for his untiring programming efforts in
writing and maintaining nearly all of the <ode variations.
Also, a special thank you is extended to Juanita Salazar for
her excellent job in preparing this manuscript.

REFERENCES

1, Hirt, C. W., Nichols, B. D., and Romero, N. C., "SOLA-A
Numerical Solution Algorithm for Transient Fluid
Flows,” Los Alamos Scientific Laboratory report LA-53852
(1975); LA-5852, Add. (1976).

2. Clovtman, L. D.,, Hirt, C. W,, and Romero, N. C., "SOiA-
ICE: A Numerical Solution Algorithm for Transient Com-
pressible Fluid Flows," Los Alamos Scientific Labora-
tory report, LA-6236 (1976).

3. Harlow, F. H. and Welch, J., E., "Numerical Celculation
of Time-Dependent Viscous Incompressible Flow," Phys.
Fluids 8, 2182 (1965). '

4, Hirt, C. W., "Heuristic Stability Theory for Finite-
Difference Fquations,™ J. Comp. Phys. 2, 339 (19¢8).

S. Viecelli, J. A., "A Computing Method for Incompressible
Flows Bounded by Moving Walls," .7, Comp. Phys. 8, 119
(1971).

6. Teyssandier, R. G. and Wilson, M. P., "An Analysis of
Plow Through Sudden Enlavgements in Pipes," J, Fluid
Mech. 64, 85 (1974;.

7.

9,

10.

11.

Nichols, B, D, and Hirt, C. W., "Nonlinear Hydrodynamic
Forces on Floating Bodies," Proc. 2nd Intern. Conf,
Num. Ship Hydro., September 1977, Berkeley, CA, pp.
382~-394.

MacCormack, R. W., "Numerjical Solution of the Interac-
tion of a Shock Wave with a Laminar Boundary Layer,"
Proc. 2nd Intern. Conf. Num. Meth. in Fluid Dyn.,
Springer-Verlag, Berlin, 151 (1970).

Hirt, C. W, and Romero, N. C., "“SOLA-DF: A Solution
Algorithm for Nonequilibrium Two-Phase Flow," Los
Alamos Scientific Laboratory report, in preparation.
Hirt, C. W,, Rivard, W, C., Romero, N. C., Oliphant, T.
A., and Torrey, M. D., "SOLA-LOOP: A Nop-Equilibrium,
Drift-Flux Code for Two~Phase Flow in Networks,™ los
Alamos Scientific Laboratory report, in preparation.
Stein, L. R. and Hirt, C. W., "SOLA-3D: A Solution Al-
gorithm for Transient, Three-Dimensional Fluid Flows,"
Ios Alamos Scientific Laboratory report, in prepara-
tion.

This wcrk was performed under the auspices of the

{lnited States Department ot Energy.

Group T-3

Theoretical Division

University of California

Los Alamos Scientific Laboratory
Los Alamos, WM 87545

INDEX

Accuracy 8
Argonne Code Center
Boundary Conditions

Burger's Equation 14
Continuative Qutflow 7
Donor-Cell Differencing
Finite-Difference Equations 3
Fluid Dynamics

MacCormack Methcd 14

Marker-and-Cell
National Energy Software Center

Navier-Stokes Equations 1,2
Numerical Stability 8,15
' Pipe Enlargement
Poisson Equation 7
Potential Flow 11
Second Order Accuracy 13
SOLA 1
SOLA-ICE 2,17
SOLA-SURF 2,12,17
Solution Algorithm 1
Steady State 11

Truncation Error 14

